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Abstract

The reactive uptake of ozone to deliquesced potassium iodide aerosol particles coated
with linear saturated fatty acids (C9, C12, C15, C18 and C20) as surfactants was
studied. The experiments were performed in an aerosol flow tube at 293 K and at-
mospheric pressure. The uptake coefficient on pure deliquesced KI aerosol was5

γ=(1.10±0.20)×10−2 at 72–75% relative humidity. In presence of organic coatings,
the uptake coefficient decreased significantly for long straight chain surfactants (>C15),
while it was only slightly reduced for the short ones (C9, C12). We linked the kinetic
results to the monolayer properties of the surfactants, and specifically to the phase
state of the monolayer formed (liquid expanded or liquid condensed state). We also10

investigated the effect of organic films to mixed deliquesced aerosol composed of a
variable mixture of KI and NaCl, which allowed determining the resistance exerted to
O3 at the aqueous surface by the two longer chained surfactants pentadecanoic acid
(C15) and stearic acid (C18). Finally, the effect of two-component coatings, consisting
of a mixture of long and short chained surfactants, was also studied.15

1 Introduction

Atmospheric aerosols contain a complex mixture of inorganic and organic compounds.
It has been determined that organic species represent a significant percentage (20–
90%) of the total mass fraction of the submicron aerosol varying with source and loca-
tion (Zhang et al., 2007; Day et al., 2009; Kanakidou et al., 2004; O’Dowd et al., 2004;20

Putaud et al., 2004).
Some studies have shown the presence of fatty acids in marine aerosol and the pre-

dominance of saturated C12-C19 straight chain fatty acids (Mochida et al., 2002; Cavalli
et al., 2004). Fatty acids come from both anthropogenic (cooking, combustion, traffic
emission, . . . ) and biogenic sources (forests, plants, biomass burning, . . . ) (Cheng25

et al., 2004; Hou et al., 2006; Huang et al., 2006; Pio et al., 2001; Robinson et al.,
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2006; Schauer et al., 2001; Simoneit and Mazurek, 2007). They are known to act as
surfactants in the atmosphere (Rudich, 2003; Ellison et al., 1999; Gill et al., 1983), and
they contribute significantly to the organic coating of sea salt particles (Mochida et al.,
2002, 2007; Tervahattu et al., 2002a, b; 2005). Tervahattu et al. (2002), have provided
evidence that fatty acids are actually located at the surface of sea salt particles.5

Recently, several studies have focused on the influence of organic surfactant films
at the air/water interface in order to determine their impact on atmospheric chemistry
(Donaldson and Vaida, 2006; Smoydzin and von Glasow, 2007; Gilman et al., 2006).
It turns out that the most important aspect of organic coatings is to reduce the mass
transfer between the gas and particle phases. Organic coatings on aqueous aerosol10

particles can also affect the process of CCN formation and growth (Andrews and Lar-
son, 1993; Chuang, 2003; Chan and Chan, 2005). In view of its importance to the
ozone and halogen budgets in the marine boundary layer, several studies have focused
on the reactive uptake of N2O5 and shown a decrease of the reactive uptake of N2O5 in
presence of monolayers surfactants (Badger et al., 2006; Cosman and Bertram, 2008;15

Cosman et al., 2008; Knopf et al., 2007; McNeill et al., 2006, 2007; Park et al., 2007;
Riemer et al., 2009; Stewart et al., 2004). For example Thornton and Abbatt (2005)
demonstrated that the presence of a monolayer of hexanoic acid inhibits N2O5 uptake
by a factor of 3 to 4 on deliquesced sea salt aerosol. McNeill et al. (2007) found that
the presence of sodium dodecyl sulfate (SDS) decreases the N2O5 reaction probability20

on deliquesced NaCl particles. Stemmler et al. (2008) studied the effect of surfactants
on the uptake of nitric acid HNO3 to deliquesced NaCl aerosol. They showed that the
uptake coefficient was reduced by a factor of 5–50 when the aerosol was coated with
fatty acids. The effect was most pronounced with pentadecanoic acid and stearic acid,
which they ascribed to the ability of these fatty acids to spontaneously form relatively25

well ordered, dense films. This indicates the importance of the surface phase state of
surfactants in determining the phase transfer properties, an observation also made in
conjunction with N2O5 uptake (Bertram and Thornton, 2009; Knopf et al., 2007) and
with acetic acid uptake (Gilman and Vaida, 2006).
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However organic coatings can also promote the phase transfer. Experiments by
Glass et al. (2006), Burden et al. (2009) and Park et al. (2009) have shown that soluble
surfactants such as butanol or hexanol can enhance the uptake of HCl into sulfuric
acid through specific interactions of the alcohol head groups with chloride ions. Many
uncertainties remain with respect to the structure and the phase state of surfactant films5

on atmospheric particles and the changes to the properties of the aqueous surface und
to what degree these properties affect the transfer of trace gases from the gas to the
liquid phase. One way to explore these is to extend the range of gas molecules to a
less soluble species, one of the motivations to study the reactive uptake of ozone to
deliquesced KI and mixed NaCl/KI particles coated with fatty acids.10

So far, the effect of surfactant layers on the phase transfer of O3 to deliquesced
aerosols has not been investigated. Recently, the heterogeneous reaction of ozone
with aqueous iodide has been studied in presence of aqueous organic species such
as phenols (Hayase et al., 2010), where, however, phenols interacted with ozone as a
competing reactant rather than as inhibitor of phase transfer. Studies of ozone reacting15

with oleate covered deliquesced NaCl particles (McNeill et al., 2007) were related to the
reaction with the double bond at the surface in contrast to similar studies with pure oleic
particles (Smith et al., 2002; Zahardis and Petrucci, 2006) and not of direct relevance to
the present investigation focusing on the transfer across a layer of saturated fatty acids.
Recently, we studied the reactive uptake of O3 to deliquesced potassium iodide and20

mixed sodium chloride/potassium iodide aerosol particles (Rouvière et al., 2010). From
these results, we obtained an average initial uptake coefficient of γ=(1.10±0.20)×10−2

and a bulk accommodation coefficient of αb=0.6±0.4
0.5. Iodide provides a substantial

aqueous phase sink to drive uptake of ozone and is thus ideally suited for the present
investigation. This reaction is also important in halogen activation processes of the25

marine boundary layer, as it may initiate halogen activation (Enami et al., 2008). Of
some relevance to the present study is the fact that surfactants may affect the interfacial
distribution of halogenide ions near the interface (Tobias and Hemminger, 2008; Krisch
et al., 2007; Latif and Brimblecombe, 2004).
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2 Experimental section

A schematic representation of the experimental setup is given in Fig. 1, which has been
described in detail by Rouvière et al. (2010). Potassium iodide particles were produced
by nebulising an aqueous solution containing 5 g/L of potassium iodide salt into 5 L/min
dry N2. The aerosol particles emitted were dried in a silica gel diffusion dryer, exposed5

to a bipolar ion source (85 Kr) to obtain an equilibrium charge distribution and then
passed through an electrostatic precipitator to remove all charged particles. For hygro-
scopic characterization experiments and to quantify the amount of fatty acid condensed
on the particles (see below), a first DMA (Differential Mobility Analyzer) could be placed
after the ion source to obtain a monodispersed aerosol. Experiments were performed10

at 75% RH (above the deliquescence humidity of 67%; Woods et al., 2007), which
leads to a diameter growth factor of 1.3 for KI particles. Under the conditions of the
present experiments thus a pure aqueous KI aerosol contains around 7.3 M KI. Ozone
was generated by irradiating a flow of a mixture of O2 and N2 in a quartz tube with
an ultra-violet lamp (Pen-Ray 3SC-9, UV Products Ltd., USA), which has a resonance15

line at a wavelength of 185 nm. Then the O3/O2/N2 flow was introduced to the aerosol
flow tube through a movable injector and diluted by the aerosol flow or N2 (ratio 1/1).
In absence of particles, the ozone concentration in the reactor was normally 90 ppb.
The aerosol flow tube reactor was a pyrex tube, 85 cm long, with an inner diameter of
2.5 cm. The ozone injector, which was kept in the center of the flow tube by means20

of three PFA legs, could be moved to vary the reaction time from 2 to 25 s to obtain
kinetic information. After the reactor, the aerosol surface concentration was measured
with a Scanning Mobility Particle Sizer (SMPS) consisting of a DMA (3071, TSI) and
a condensation particle counter (CPC, 3022, TSI, USA) collecting the aerosols at the
exit of the flow tube. The concentration of ozone was measured with a photometric25

ozone analyzer (model ML 9810, Monitor Labs Inc, USA) after separating ozone from
the particles by diffusion in an annular coflow device. This separation was necessary,
because the aerosol interferes with the photometric ozone detection due to scattering
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and absorption.
In order to investigate the effects of surfactants on the ozone uptake, varying

amounts of a specific fatty acid were condensed on the dry particles. Straight chain
C9-C20 fatty acids (FA) were used as surfactants in the experiments. The effectiveness
of the surfactant coatings will be related to their properties, as provided in Gabler and5

Heumann (1993). The procedure to get a reproducible amount of fatty acid on the
particles has already been described by Stemmler et al. (2008). An organic vapor was
generated by heating 0.5 g of surfactants in a temperature controlled reservoir. The
coating took place after removing charged particles from the aerosol flow and before
their humidification (Fig. 1). The aerosol flow passed over the reservoir through the10

heated zone and thereby got into contact with the surfactant vapor. In the condenser
tube downstream of the warm zone, the gas gradually cooled and the vapor condensed
onto the surface of the particles. The amount of fatty acid condensed on the particles
was controlled by changing the evaporator temperature. For the example of lauric acid,
Fig. 2a demonstrates the increasing particle size of monodispersed KI particles (parti-15

cle mode diameter) coated with increasing amounts of lauric acid (C12) with increasing
temperature. The mass ratio of surfactant was derived from the associated change
in particle volume for each temperature. The volume of fatty acid (VFA) was obtained
from the difference of the volume of coated particles (VKI+FA) calculated from the cor-
responding measured diameter (Dc) and the volume of the dry particles with diameter20

D0(VKI). Using the densities of KI and the fatty acid of interest, respectively, we deter-
mined the mass ratio of fatty acid (mFA

/
(mFA+mKI). The mass ratios obtained for C9,

C12, C15, C18 and C20 as a function of the temperature of the evaporator are shown
in Fig. 2b. We do not know whether the organics formed a homogeneous coating on
the dry particles or condensed as a separate droplet or crystal attached to the particle.25

We therefore associate a significant uncertainty with these values, as we do not take
into account any shape effects. It serves reasonably well to compare among the differ-
ent fatty acids. Once deliquesced, we assumed that fatty acids spontaneously form a
monolayer with the excess accumulating a lens at the aqueous surface, as described
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in the next section.

2.1 Assessment of monolayer properties

The monolayer properties of the fatty acids of interest here were explored using the
model developed by Seidl (2000). These monomolecular films can exist in three dif-
ferent states: gaseous, expanded and condensed liquid state. The corresponding π-A5

isotherms are shown in Fig. 3a, where the film pressure is represented as a func-
tion of the area per molecule. This figure indicates also two essential values for the
π-A isotherms that are the location of the phase transition from the expanded to the
condensed liquid phase state (Fj, phase transition film pressure) and the Equilibrium
Spreading Pressure (ESP). The ESP is defined as the pressure of the film in equilib-10

rium with its condensed phase. It corresponds to the point where the monolayer can
not be compressed more without that a separate solid (or liquid) phase would precipi-
tate. It may be compared to the solubility of a compound in solution as the 3-D analog
in that if more of this compound is added to the solution than given by the solubility the
excess salt forms a solid phase in equilibrium with the solution. Compounds exhibiting15

an ESP>0 mN/m spread spontaneously over the aqueous surface. Data concerning
Fj and ESP are also reported in Table 1. We assume that if we have deposited fatty
acids in amounts more than the equivalent of the corresponding monolayer at the ESP
on the wet particles, the phase state of this monolayer is given by the ESP, while the
rest remains as excess solid or liquid fatty acid attached to the aqueous solution. With20

smaller amounts of a fatty acid we assume that they form a more dilute monolayer
with homogeneous surface density over the particle. To make this quantitative, from
the mass fractions plotted in Fig. 2b we calculated the area per molecule (i.e., inverse
surface density) as a function of evaporator temperature plotted in Fig. 3b. The surface
density was calculated as the ratio of the number of fatty acid molecules per particle25

(nFA) divided by the surface area per particle as obtained from the SMPS. Then, know-
ing the ESP of each FA from the corresponding π-A isotherm shown in Fig. 3a, the area
per molecule in the monolayer was assumed to remain constant with further increasing
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mass fraction and represented as a solid line in Fig. 3b. This figure should demonstrate
that for higher mass fractions, the monolayer density and structure remained constant,
while the excess material formed a separate phase increasing the overall particle sur-
face area but not affecting the monolayer properties above the aqueous solution. As
already pointed out by Stemmler et al. (2008), we do not expect formation of micelles5

for these fatty acids.

3 Results and discussion

The effects of fatty acids to the ozone uptake on deliquesced KI particles or on mixed
NaCl/KI particles were investigated in order to see if these amphiphilic surfactants pro-
mote or inhibit the mass transfer of ozone to the bulk phase.10

The uptake coefficient, γ, of gases to an aerosol can be defined as the number of
gas molecules being taken up by the particles divided by the number of gas molecules
impinging onto their surface (Pöschl et al., 2007). The rate of ozone loss from the gas
phase is described as a pseudo-first order process Eq. (1), where kg,p,O3

is the first or-
der rate coefficient, and t is the exposure time between the gas and the aerosol surface15

(Liu et al., 2001). Then, the rate coefficient can be related to the uptake coefficient, γ,
on the aerosol using Eq. (2), where S is the aerosol surface area per volume of gas
(m2/m3) and ω is the mean molecular velocity of O3 in the gas phase (m/s).

d [O3]

dt
=kg,p,[O3] (1)

kg,p,O3
=
Sωγ

4
(2)20

In absence of an organic coating, the study of uptake of ozone to deliquesced potas-
sium iodide aerosol particles showed that the uptake was both influenced by the bulk
accommodation coefficient (αb) and the bulk reactivity (Γb).
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In presence of a coating and under appropriate steady state approximations, the
uptake coefficient of gas molecules from the gas-phase into a liquid can be expressed
in terms of a sequence of resistances as shown in Eq. (3). In absence of an elementary
picture of the detailed processes we replace the bulk accommodation coefficient, the
probability that a gas phase molecule hitting the surface enters the liquid in solvated5

form, by an overall inverse resistance at the surface, 1/β, for transport across the
surfactant layer including also transfer into the liquid. The inverse resistance due to
the bulk liquid phase reaction is expressed by 1/Γb. In Eq. (3), T is the temperature, H
is the Henry’s law coefficient of O3, Db,O3

is the diffusion coefficient of O3 in the liquid
phase, R is the universal gas constant, and kb the second order loss rate constant of10

O3 in the liquid phase:

1
γ
=

1
β
+

1
Γb

with Γb =
4HRT

√
Db,O3

kb[I−]

ω
(3)

Note that in our previous study we explicitly kept track of the iodide content as a func-
tion of reaction time to take into account its significant depletion, depending on particle
size, during the residence time in the flow reactor and the coflow device. In the present15

study we used a simplified first order treatment as the coated particle exhibited signifi-
cantly less ozone uptake, so that iodide in the aerosol phase remained in excess. After
having established first order conditions for a number of representative cases, the re-
active uptake coefficients were determined from the removal of O3 at a fixed maximum
interaction time (41 s, including the residence time in the coflow device) as a function20

of the amount of fatty acid deposited at the particle surface, which is related to the
temperature in the evaporator as mentioned above. This allowed to directly compare
uptake to coated particles with that to uncoated particles and reduced uncertainties
related to day to day variations in flows, humidity and aerosol properties. The initial
concentration of O3 in absence of particles was around 2.2×1012 molecules/cm3. A25

typical decay of ozone after admission of deliquesced coated particles in the reactor is
shown in Fig. 4 as a function of the coating temperature for the example of lauric acid
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(C12). The ozone signal returned to its initial value within about 2 min after exchanging
the particle flow with a flow of pure N2, consistent with the residence time distribution
of the particles in the flow tube and the coflow separation device and the response
time of the O3 analyzer. Evidently, the ozone depletion was decreasing with increasing
amounts of lauric acid.5

Uptake coefficients of ozone to deliquesced potassium iodide coated by several
fatty acids (C9, C12, C15, C18 and C20) were measured. Figure 5a shows the ra-
tio (γcoated

/
γuncoated) of the uptake coefficient to coated particles to that of neat deli-

quesced KI particles, covering the range of mass ratios of 0–70% of surfactants. For
C9 and C12, the changes were relatively weak, with γcoated

/
γuncoated dropping to about10

50%. For the C9 acid exhibiting the highest water solubility of the fatty acids investi-
gated, less than 1% of a monolayer amount is soluble in a pure aqueous particle of
the size as used in our experiments. So For C9, we may rather suspect some losses
due to evaporation as already discussed by Stemmler et al. (2008). However, as dis-
cussed below, it is more likely the phase state that determines the permeability of the15

C9 and C12 films. The saturated C15, C18 and C20 acids lead to a strong depletion of
the reaction rate of O3 with aqueous KI particles. Overall, it appears that there is a
trend of increasing degree of reduction in γ with the length of the hydrocarbon chain,
although there is an exception with the C15. Therefore, the first apparent conclusion
is that also for O3 organic surfactant coatings can have significant effects on interfa-20

cial mass transfer. Another way to interpret these results and to relate them to the
monolayer properties is to plot the ratio γcoated

/
γuncoated as a function of the area per

molecule of surfactant as shown in Fig. 5b. On this scale, the low evaporator temper-
atures that led to low surfactant mass ratios now plot at the high area per molecule
end, i.e., the area per molecule decreases with increasing mass ratio for all fatty acids25

C9-C20. Reiterating the assessment of the monolayer properties above, once the cal-
culated area per molecule hits the position of the ESP in the phase diagram, values
below that reflect virtual average properties only, but in reality, the area per molecule
in the monolayer does not decrease further with increasing mass ratio, as indicated by
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the lines shown in Fig. 3b. The additional surfactant molecules form a separate phase
as discussed above. In Fig. 5b the open squares represent the position of the ESP.
These data were only available for C12 to C20. From that we can deduce a decrease of
the uptake coefficient by 30% for C12, 85 % for C15 and 50% for C18 in presence of a
monolayer of FA under ESP conditions at the air/water interface. We suspect that the5

further decrease of γcoated
/
γuncoated with increasing mass ratio or decreasing effective

area per molecule is not due to further compression of the monolayer but rather due
to the extension of the separate fatty acid phase. At high mass ratios, the compound
particle may be dominated by the fatty acid phase in volume and surface area, and only
the aqueous subphase with the monolayer at ESP contributes to O3 uptake. For the10

C18 fatty acid, adding the excess of fatty acid beyond the ESP as a separate sphere
leads to about a doubling of the surface area, which should lead to a maximum de-
crease of the uptake coefficient by a factor of 2. The uptake coefficient decreased by
more than a factor of two beyond the ESP. This may indicate that nevertheless further
compression of the film due to the geometric constraints of the spherical droplet occurs15

or that a significant part of the droplet surface area is in contact with the excess solid
phase and thus effectively reduces the surface area exposed to O3.

Figure 6 represents the ratio of the reactive uptake coefficient in presence of organic
monolayer to the uptake coefficient of the uncoated particles (γcoated

/
γuncoated) as a

function of the carbon chain length for three different mass ratios. While the mass20

ratio dependence is already contained in Fig. 5a, this plot makes the complex inter-
play between phase state, coverage, mass transfer properties and carbon chain length
strikingly apparent. From Figs. 2b and 3b we note that we form a monolayer at the
ESP for a mass ratio of 6, 10 and 15% for C12, C15 and C18, respectively. Therefore,
in Fig. 6, the lowest mass ratio for lauric acid (C12) is slightly below the position of25

the ESP, corresponding to a more dilute monolayer. The uptake coefficient responds
slightly to an increase in mass ratio. A similar behavior is observed for the C9 com-
pound. In striking contrast, for C15 we observed a very strong decrease already for a
mass ratio of 6%. Increasing the mass ratio to 20%, for which we expect the monolayer
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at its ESP with already a slight excess fatty acid phase, leads to a further drop of the
uptake coefficient. Further increasing the mass ratio to 30% leads to no further change
in the uptake coefficient. For C18, with a mass ratio of 6%, the monolayer formed is
quite more dilute than expected for the ESP, and the major drop in the uptake coef-
ficient of ozone occurs with increasing the mass ratio to 20%, above the ESP, and a5

small further drop for the mass ratio increasing to 30%. Although we observe similar
behavior for the C20 compound, we note that the model by Seidl returns a negative
ESP, which means that it may eventually not spread spontaneously over the aqueous
surface. Similar to the C18 case the reduction of the uptake coefficient could be par-
tially explained by the increased surface area of the mixed phase particle. Again, the10

reduction of the uptake coefficient is more than expected based on the larger surface
area due to the excess organic phase. Therefore, the formation of a monolayer also
for the C20 may be feasible in spite of the negative ESP estimated by the model of
Seidl (2000).

After deconvoluting the observations in Figs. 5a and 6 to take into account the mass15

fraction for each compound at which a monolayer at the ESP can be formed leads to a
consistent picture of increasing inhibition of O3 uptake with increasing mass ratio up to
the point, where the monolayer exists at its ESP. A further decrease of the uptake coef-
ficient may be related to the increasing surface area of an excess unreactive fatty acid
phase. However, the most striking difference between the degree of uptake reduction20

for monolayers at the ESP among the different compounds is rooted in the different
phase states the monolayers exist at the ESP. We therefore indicate the position of
the phase transition from an expanded to a condensed liquid state, Fj, in Fig. 5b. It is
immediately apparent that when going from higher to lower area per molecule or from
lower to higher mass fraction, the C15 hits this phase transition first. Thus, for C15,25

the state of the film at the ESP is condensed liquid, which has a substantially higher
degree of ordering than in the expanded state, which in turn obviously leads to its in-
creased resistance towards transfer of O3 across the monolayer. In contrast, the C12
remains in its expanded state up to the ESP, associated with an only small effect on
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O3 uptake. Higher compression would be necessary to bring a C12 monolayer to its
condensed liquid state, for which no driving force is available under the conditions of
the present experiments. Also for the C18 film, we expect the phase transition to the
liquid condensed state just before the ESP, but at substantially higher mass fractions
than for the C15 explaining the delayed response of the uptake coefficient to increasing5

mass fractions beyond those expected by the different molecular weight.
Uptake coefficients obtained for aerosols containing a mixture of sodium chloride

and potassium iodide in presence of fatty acids are shown as a function of the iodide
concentration in Fig. 7a for the C15 and Fig. 7b for the C18 compound. To calculate
the iodide concentrations we used the same procedure as described by Rouvière et10

al. (2010). For the mixed solution particles, we considered the solute mole fraction
of iodide and chloride in the nebulized solution (x−

Cl,x
−
I ). Then, by first measuring the

size distribution under dry conditions for each experiment, we obtained the dry particle
diameter (D0) and the dry particle volume, from which we deduced the total number
of moles (iodide and chloride, nT0) in the mixed particles by taking into account the15

density and the mole fraction of each salt. Under humid conditions, where particles
were deliquesced, we obtained a wet diameter and a wet volume (D,V ), and we cal-
culated the total concentration of solutes for the mixed aqueous particles (CT=nTO/V ).
Finally, to obtain the iodide concentration we applied the mole fraction (x−

Cl,x
−
I ) to this

concentration. The uptake coefficients presented in Fig. 7 are time averaged uptake20

coefficients calculated from the total ozone loss at the maximum residence time. As
we have established earlier, O3 uptake is driven by bulk reaction in the particle phase,
and thus the uptake coefficient scales linearly with the square root of the iodide con-
centration Eq. (3). Note that this linear relation is not granted, if significant depletion
of iodide occurs during the course of the residence time in the reactor as discussed in25

detail with a larger data set by Rouvière et al. (2010).
From Fig. 5a and b we could determine that we are forming a monolayer at the

ESP for C15 and C18 as soon as we obtain a mass ratio of surfactant of 10 and 15%,
respectively. From Fig. 7a and b we observed for both FA that the slope of increase
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of the uptake coefficient with iodide concentration decreases with increasing organic
mass fraction. In both cases, for mass ratios of 30% and above, the uptake coefficient
was insensitive to the iodide concentration. The changing slope is a direct result of the
increasing contribution of the term 1

/
R to overall uptake Eq. (3). The rate of uptake

shifts from being mostly reaction limited in presence of low amounts of organics to5

phase transfer limited at higher organic loadings. In accordance with the observations
made with pure KI particles, this change in kinetic regime occurs at lower mass ratios
for the C15 than for the C18 fatty acid. In both cases, for the highest mass ratios we
expect a monolayer at its ESP, which is in the condensed liquid state. Since, obviously,
the uptake is not influenced by the bulk reactivity (Γb) anymore for this case, γ can10

be expressed by 1
γ=

1
β . To estimate the resistance of the fatty acids for the transfer

of O3 at the interface we used the results from Fig. 7 for the highest mass ratio of
surfactant: βC15

=6.8×10−4 and βC18
=3.3×10−4. Therefore, in spite of the slightly

stronger compression of the C15 film, the resistance (1/β) for O3 to cross this monolayer
is about a factor two lower than for the C18 film. This might be related to the structure15

of these films and the longer chain length of the C18 fatty acid.
In an attempt to assess the inhibiting effects of mixed component surfactant layers

we made a few rather qualitative experiments with C12/C15 and C12/C18 mixtures each
containing a short and a long chained surfactant. Based on the results presented
so far, C12 behaves substantially different than C15 or C18, as it should not be able20

to form a liquid condensed film under our experimental conditions. Therefore, the
intention of these experiments was to assess whether addition of the C12 fatty acid
could significantly change the inhibitory effect of the C15 or the C18 monolayers. While
Cosman and Bertram (2008) were able to control the composition of two component
films, we mixed the two components in the evaporator in the same configuration as25

for coating the particles with one component alone described above. The amount of
fatty acid condensing on the particles is related to its vapor pressure in the evaporator
and to the temperature gradient in the condenser tube. The vapor pressure of one
of the components in the evaporator should not depend strongly on the presence or
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not of an additional component in absence of mass transport limitations. We therefore
assumed that the relative composition of the coated particles roughly scales with the
mass ratios obtained for each component individually. Figure 8a and b presents the
ratio γmixed film

/
γuncoated for the two individual components C12 and C15 and C12 and

C18, respectively, as well as the mixtures thereof, in a format similar to Fig. 6. In Fig. 8,5

however, we do not use the measured mass ratio of organic but rather the evaporator
temperature to categorize different levels of coatings. In Fig. 8a, the addition of some
amount of C15 to the C12 in the evaporator leads to a strong change in the reduction of
the uptake coefficient and a response more closely to that of the pure C15 case. The
relative proportion of C15 to C12 in the evaporator does not strongly affect the results,10

since the vapor pressure in the evaporator of each component does not depend on the
relative composition of the condensed phase. The dominating role of C15 in inhibiting
the transfer of O3 in the mixed film is likely because at the same temperature, the mass
ratio of a C15 coating is by far higher than that of a C12 coating (Fig. 2b). This is also
the case for the mixture between the C12 and the C18, where the mixed coating is15

likely also dominated by the C18. This would then be consistent with the observed O3
uptake reduction being comparable to the pure C18 case (Fig. 8b), and again with little
difference between the two different mixtures in the evaporator.

Therefore, in absence of experiments with a wider range of well controlled relative
compositions, the only conclusion we can draw from the present results is that the20

addition of a small amount of a surfactant, which is in its expanded state, does not
strongly affect the resistance of a concomitantly present condensed liquid monolayer
towards the phase transfer of O3.

3.1 General discussion

Summarizing this discussion, we have observed a substantial reduction in uptake co-25

efficient of O3 to deliquesced KI aerosol in presence of fatty acid surfactants and that
the efficiency of the barrier towards transfer of O3 is strongly related to the phase state
of the monolayer formed on the aqueous solution. It seems that only a monolayer in its
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condensed liquid state is able to inhibit transfer of O3 by more than an order of magni-
tude. Under such conditions, the monolayer likely exposes a hydrophobic interface to
the adsorbing gases, from which O3 rather desorbs than diffuses across.

In our case we studied a linear saturated fatty acid. We observed in all cases a
decrease of the uptake due to the presence of these surfactants. However we obtained5

a stronger effect to impede the mass transfer for long chain surfactant as C15, C18 and
C20 due to the formation of a liquid condensed film, with a stronger deactivation by
the C15 coating related to its more compressed monolayer at the equilibrium spreading
pressure. For shorter chain FA as C9 and C12, they are able to form an expanded film
but not a condensed film which can explains their only limited ability to inhibit phase10

transfer of O3.
In general, our results with the rather little soluble O3 are in line with previous stud-

ies. Xiong et al. (1998) showed that a C18 coating reduced the hydroscopic growth
rate of sulphuric acid aerosol, while a coating of oleic acid (nonlinear and unsaturated)
had no effect, likely related to the fact that oleic acid does not form condensed liquid15

films at pressures, where the saturated straight chain C18 fatty acid does. Similarly,
Gilman and Vaida (2006) related the permeability of the films to the molecular prop-
erties and pressure-area isotherms and demonstrated that the uptake of acetic acid
through monolayers of saturated C18 and C30 alcohols into an aqueous phase was
strongly reduced, but not affected by oleic acid,.20

Most studies on dinitrogen peroxide uptake (N2O5) to sulfuric acid, or to NaCl or
sea salt aerosol in presence of organic surfactants have shown an inhibition of the
uptake (McNeill et al., 2006; Park et al., 2009; Stewart et al., 2004; Thornton and
Abbatt, 2005). More particularly Cosman and Bertram (2008) with the N2O5 uptake
study on aqueous H2SO4 solutions coated with 1 or 2 component monolayers, have25

shown that the reactive uptake coefficient depend on the molecular surface area of
the surfactant and also that a small amount of a branched surfactant could affect the
overall resistance to the reactive uptake. Since these mixed component films were well
defined in composition, these results cannot be directly compared to our qualitative
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results on mixed films. Some other studies have related the effectiveness of FA to
act as barriers to the nature of the head group (polarity), the pH and the temperature
(Barnes, 1997; Johann and Vollhardt, 1999; Latif and Brimblecombe, 2004).

4 Conclusions

The effects of amphiphilic fatty acids on the reaction of ozone with deliquesced potas-5

sium iodide aerosol particles were investigated with an aerosol flow tube experiment.
This is the first time that this system has been investigated under aerosol conditions.
From the previous study in absence of organic coating, we determined an initial uptake
coefficient of γ=(1.10±0.20)×10−2. The presence of a long chain surfactant coating
adds a significant resistance to the transfer of O3 to deliquesced aerosol particles, sim-10

ilar to the case of more reactive trace gases. The results showed that, especially for
the C15-C20, the amphiphilic surfactant limit the mass transfer of ozone to the aqueous
phase. Through varying the iodide concentration in mixed chloride/iodide particles we
could directly determine the resistance exerted at the aqueous surface by two longer
chained surfactants: pentadecanoic acid and stearic acid. The effectiveness of C15 to15

inhibit the ozone uptake from the gas phase is higher than for the C18. This could be
explained by the monolayer properties of the fatty acids and also by the state of the
monolayer formed at the equilibrium spreading pressure (in expanded or condensed
liquid state). Concerning the short chained surfactant C9 and C12, the monolayers
formed are in the liquid expanded state, known to be not well ordered and are only20

slightly hindering ozone uptake. This study highlights the effectiveness of immiscible
films of long-chain organics (C15-C20) to have an effect on the mass transport across
the air-water interface by acting as a barrier and impede the transport of gases and
other volatile species across the interface.
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Pöschl, U., Rudich, Y., and Ammann, M.: Kinetic model framework for aerosol and cloud sur-
face chemistry and gas-particle interactions – Part 1: General equations, parameters, and
terminology, Atmos. Chem. Phys., 7, 5989–6023, doi:10.5194/acp-7-5989-2007, 2007.

Putaud, J. P., Raes, F., Van Dingenen, R., Bruggemann, E., Facchini, M. C., Decesari, S.,
Fuzzi, S., Gehrig, R., Huglin, C., Laj, P., Lorbeer, G., Maenhaut, W., Mihalopoulos, N.,10

Muller, K., Querol, X., Rodriguez, S., Schneider, J., Spindler, G., ten Brink, H., Torseth,
K., and Wiedensohler, A.: European aerosol phenomenology-2: chemical characteristics of
particulate matter at kerbside, urban, rural and background sites in Europe, Atmos. Environ.,
38, 2579–2595, 2004.

Riemer, N., Vogel, H., Vogel, B., Anttila, T., Kiendler-Scharr, A., and Mentel, T. F.: Relative15

importance of organic coatings for the heterogeneous hydrolysis of N2O5 during summer in
Europe, J. Geophys. Res., 114, D17307, doi:10.1029/2008JD011369, 2009.

Robinson, A. L., Subramanian, R., Donahue, N. M., Bernardo-Bricker, A., and Rogge, W. F.:
Source Apportionment of Molecular Markers and Organic Aerosol. 3. Food Cooking Emis-
sions, Environ. Sci. Technol., 40, 7820–7827, 2006.20

Rouvière, A., Sosedova, Y., and Ammann, M.: Uptake of ozone to deliquesced KI and mixed
KI/NaCl aerosol particles, J. Phys. Chem. A, doi:10.1021/jp103257d, 2010.

Rudich, Y.: Laboratory Perspectives on the Chemical Transformations of Organic Matter in
Atmospheric Particles, Chem. Rev., 103, 5097–5124, 2003.

Schauer, J. J., Kleeman, M. J., Cass, G. R., and Simoneit, B. R. T.: Measurement of Emissions25

from Air Pollution Sources. 4. C1-C27 Organic Compounds from Cooking with Seed Oils,
Environ. Sci. Technol., 36, 567–575, 2001.

Seidl, W.: Model for a surface film of fatty acids on rain water and aerosol particles, Atmos.
Environ., 34, 4917–4932, 2000.

Simoneit, B. R. T. and Mazurek, M. A.: Organic Matter of the Troposphere–II.: Natural Back-30

ground of biogenic lipid matter in aerosols over the rural western United States, Atmos.
Environ., 41, 4–24, 2007.

Smith, G. D., Woods, E., DeForest, C. L., Baer, T., and Miller, R. E.: Reactive Uptake of

15043

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/10/15023/2010/acpd-10-15023-2010-print.pdf
http://www.atmos-chem-phys-discuss.net/10/15023/2010/acpd-10-15023-2010-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD
10, 15023–15054, 2010

The effect of fatty
acid surfactants on
the uptake of ozone

A. Rouvière and
M. Ammann

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Ozone by Oleic Acid Aerosol Particles: Application of Single-Particle Mass Spectrometry to
Heterogeneous Reaction Kinetics, J. Phys. Chem. A, 106, 8085–8095, 2002.

Smoydzin, L. and von Glasow, R.: Do organic surface films on sea salt aerosols influence atmo-
spheric chemistry? – a model study, Atmos. Chem. Phys., 7, 5555–5567, doi:10.5194/acp-
7-5555-2007, 2007.5

Stemmler, K., Vlasenko, A., Guimbaud, C., and Ammann, M.: The effect of fatty acid surfactants
on the uptake of nitric acid to deliquesced NaCl aerosol, Atmos. Chem. Phys., 8, 5127–5141,
doi:10.5194/acp-8-5127-2008, 2008.

Stewart, D. J., Griffiths, P. T., and Cox, R. A.: Reactive uptake coefficients for heterogeneous
reaction of N2O5 with submicron aerosols of NaCl and natural sea salt, Atmos. Chem. Phys.,10

4, 1381–1388, doi:10.5194/acp-4-1381-2004, 2004.
Tervahattu, H., Hartonen, K., Kerminen, V. M., Kupiainen, K., Aarnio, P., Koskentalo, T., Tuck,

A. F., and Vaida, V.: New evidence of an organic layer on marine aerosols, J. Geophys.
Res.-Atmos., 107, 4053, doi:10.1029/2000JD000282, 2002a.

Tervahattu, H., Juhanoja, J., and Kupiainen, K.: Identification of an organic coating on marine15

aerosol particles by TOF-SIMS, J. Geophys. Res., 107, 2002b.
Tervahattu, H., Juhanoja, J., Vaida, V., Tuck, A. F., Niemi, J. V., Kupiainen, K., Kulmala, M., and
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Table 1. Properties of the surfactants.

Name Formula Molecular Density Aqueous Melting Vapor ESP Fj
weight g/cm3 solubility ◦C point pressure mN/ma mN/ma

g/mol g/100g at 25 ◦C
of water
at 20 ◦C

Nonanoic acid C9H18O2 158.24 0.900 0.0284 12.4 9×10−2

Lauric acid C12H24O2 200.32 0.880 0.0055 43.8 2.9×10−3 23.4 43.5

Pentadecanoic C15H30O2 242.40 0.8423 0.0012 52.3 1.1×10−4 21.0 6.2
acid

Stearic acid C18H36O2 284.48 0.847 0.00029 69.3 5.6×10−7 3.7 −23.9

Arachidic acid C20H40O2 312.54 0.8240 − 76.5 4.4.×10−8 −1.6 −57.9

a ESP: Equilibrium spreading pressure; Fj phase transition film pressure from the expanded to
the condensed liquid phase state. The values were calculated from the model of Seidl (2000).
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Figure 1. 

Fig. 1. Overview of the experimental setup.
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Figure 2(a) and 2(b). 
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Figure 2(a) and 2(b). 

 

Fig. 2. (a) Particle size distributions of a monodisperse dry aerosol (KI) exposed to Lauric
acid (C12) in the evaporator at different temperatures. (b) Evolution of the mass ratio of surfac-
tants as a function of the evaporators temperature (black crosses: C9, red circles: C12, green
triangles: C15, blue squares: C18 and turquoise diamonds: C20).
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Figure 3(a) and 3(b). 

 

 

Fig. 3. (a) π-A isotherms of lauric acid (red line), pentadecanoic acid (green line), stearic
acid (blue line) and arachidic acid (turquoise line), according to the model of Seidl (2000).
The crosses represent the Equilibrium spreading Pressure of an excess bulk phase of the
individual fatty acids and the circles illustrate the phase transition film pressure between the
expanded and condensed phases. (b) Area per molecules of the fatty acids as a function of
the evaporator’s temperature (black crosses: C9, red circles: C12, green triangles: C15, blue
squares: C18 and turquoise diamonds: C20).
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Figure 4. 

Fig. 4. Experimental profile of the O3 concentration in presence of lauric acid (C12) for dif-
ferent coating temperature in the evaporator ((a) without coating, (b) T=23.6 ◦C, (c) T=30 ◦C,
(d) T=40 ◦C, (e) T=50 ◦C, (f) T=60 ◦C, (g) T=65 ◦C, (h) T=68 ◦C, (i) T=72 ◦C, (j) T=75 ◦C, (k)
T=80 ◦C, (l) T=90 ◦C).
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Figure 5(a) and 5(b).
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Figure 5(a) and 5(b).Fig. 5. (a) Ratio of coated uptake to neat uptake (γcoated

/
γuncoated) on deliquesced KI aerosol

containing mass ratio of 0–70% of surfactants for different fatty acids (black crosses: C9, red
circles: C12, green triangles: C15, blue squares: C18 and turquoise diamonds: C20). (b) Ratio
γcoated

/
γuncoated as a function of the area per molecules of surfactant (black crosses: C9, red

circles: C12, green triangles: C15, blue squares: C18 and turquoise diamonds: C20). The
rectangles represent the position of the equilibrium spreading pressure ESP and the circles
represent the phase transition film pressure Fj.

15051

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/10/15023/2010/acpd-10-15023-2010-print.pdf
http://www.atmos-chem-phys-discuss.net/10/15023/2010/acpd-10-15023-2010-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD
10, 15023–15054, 2010

The effect of fatty
acid surfactants on
the uptake of ozone

A. Rouvière and
M. Ammann

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

 32

 

8 10 12 14 16 18 20

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Carbon chain length

 co
at

e
d 
/ 

un
co

at
ed

 

Figure 6.

Fig. 6. Ratio γcoated

/
γuncoated as a function of the carbon chain length for three different mass

ratio of organic (black squares: 6%, red circles: 20%, blue triangles: 30%).
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Figure 7(a) and 7(b).

(b)
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Figure 7(a) and 7(b).

Fig. 7. Plot of the uptake coefficient vs. the iodide concentration
√

[I−] as a function of the mass
ratio of surfactant ((a) for C15 and (b) for C18). Different mass ratio are represented. For C15
black squares: no coating, blue circles: 3%, red triangles: 4% and green diamonds: 30%. For
C18 black squares: no coating, empty black square: 0%, blue circles: 2%, red triangles: 6%
and green diamonds: 37%.
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Figure 8(a) and 8(b) 

(b)
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Figure 8(a) and 8(b) 

Fig. 8. Evolution of the ratio γmixed film

/
γuncoated for two-component coatings (a) C12/C15 and

(b) C12/C18) at different temperatures of the evaporator (T=40 ◦C: black squares, T=50 ◦C: red
circles, T=60 ◦C: blue triangles and T=70 ◦C: green diamonds).
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